Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 18(5): 1166-1181, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37084723

RESUMO

Organoid models provide powerful tools to study tissue biology and development in a dish. Presently, organoids have not yet been developed from mouse tooth. Here, we established tooth organoids (TOs) from early-postnatal mouse molar and incisor, which are long-term expandable, express dental epithelium stem cell (DESC) markers, and recapitulate key properties of the dental epithelium in a tooth-type-specific manner. TOs display in vitro differentiation capacity toward ameloblast-resembling cells, even more pronounced in assembloids in which dental mesenchymal (pulp) stem cells are combined with the organoid DESCs. Single-cell transcriptomics supports this developmental potential and reveals co-differentiation into junctional epithelium- and odontoblast-/cementoblast-like cells in the assembloids. Finally, TOs survive and show ameloblast-resembling differentiation also in vivo. The developed organoid models provide new tools to study mouse tooth-type-specific biology and development and gain deeper molecular and functional insights that may eventually help to achieve future human biological tooth repair and replacement.


Assuntos
Ameloblastos , Incisivo , Animais , Camundongos , Humanos , Dente Molar , Diferenciação Celular , Organoides , Biologia
2.
Front Cell Dev Biol ; 10: 1021459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299483

RESUMO

Single-cell (sc) omics has become a powerful tool to unravel a tissue's cell landscape across health and disease. In recent years, sc transcriptomic interrogation has been applied to a variety of tooth tissues of both human and mouse, which has considerably advanced our fundamental understanding of tooth biology. Now, an overarching and integrated bird's-view of the human and mouse tooth sc transcriptomic landscape would be a powerful multi-faceted tool for dental research, enabling further decipherment of tooth biology and development through constantly progressing state-of-the-art bioinformatic methods as well as the exploration of novel hypothesis-driven research. To this aim, we re-assessed and integrated recently published scRNA-sequencing datasets of different dental tissue types (healthy and diseased) from human and mouse to establish inclusive tooth sc atlases, and applied the consolidated data map to explore its power. For mouse tooth, we identified novel candidate transcriptional regulators of the ameloblast lineage. Regarding human tooth, we provide support for a developmental connection, not advanced before, between specific epithelial compartments. Taken together, we established inclusive mouse and human tooth sc atlases as powerful tools to potentiate innovative research into tooth biology, development and disease. The maps are provided online in an accessible format for interactive exploration.

3.
J Vis Exp ; (182)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35499334

RESUMO

Teeth are of key importance in life not only for food mastication and speech but also for psychological well-being. Knowledge on human tooth development and biology is scarce. In particular, not much is known about the tooth's epithelial stem cells and their function. We succeeded in developing a novel organoid model starting from human tooth tissue (i.e., dental follicle, isolated from extracted wisdom teeth). The organoids are robustly and long-term expandable and recapitulate the proposed human tooth epithelial stem cell compartment in terms of marker expression as well as functional activity. In particular, the organoids are capable to unfold an ameloblast differentiation process as occurring in vivo during amelogenesis. This unique organoid model will provide a powerful tool to study not only human tooth development but also dental pathology, and may pave the way toward tooth-regenerative therapy. Replacing lost teeth with a biological tooth based on this new organoid model could be an appealing alternative to the current standard implantation of synthetic materials.


Assuntos
Mastigação , Organoides , Diferenciação Celular , Implantação do Embrião , Humanos , Células-Tronco
4.
Cell Mol Life Sci ; 79(3): 153, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35217915

RESUMO

Insight into human tooth epithelial stem cells and their biology is sparse. Tissue-derived organoid models typically replicate the tissue's epithelial stem cell compartment. Here, we developed a first-in-time epithelial organoid model starting from human tooth. Dental follicle (DF) tissue, isolated from unerupted wisdom teeth, efficiently generated epithelial organoids that were long-term expandable. The organoids displayed a tooth epithelial stemness phenotype similar to the DF's epithelial cell rests of Malassez (ERM), a compartment containing dental epithelial stem cells. Single-cell transcriptomics reinforced this organoid-ERM congruence, and uncovered novel, mouse-mirroring stem cell features. Exposure of the organoids to epidermal growth factor induced transient proliferation and eventual epithelial-mesenchymal transition, highly mimicking events taking place in the ERM in vivo. Moreover, the ERM stemness organoids were able to unfold an ameloblast differentiation process, further enhanced by transforming growth factor-ß (TGFß) and abrogated by TGFß receptor inhibition, thereby reproducing TGFß's known key position in amelogenesis. Interestingly, by creating a mesenchymal-epithelial composite organoid (assembloid) model, we demonstrated that the presence of dental mesenchymal cells (i.e. pulp stem cells) triggered ameloblast differentiation in the epithelial stem cells, thus replicating the known importance of mesenchyme-epithelium interaction in tooth development and amelogenesis. Also here, differentiation was abrogated by TGFß receptor inhibition. Together, we developed novel organoid models empowering the exploration of human tooth epithelial stem cell biology and function as well as their interplay with dental mesenchyme, all at present only poorly defined in humans. Moreover, the new models may pave the way to future tooth-regenerative perspectives.


Assuntos
Saco Dentário/metabolismo , Organoides/metabolismo , Ameloblastos/citologia , Ameloblastos/metabolismo , Diferenciação Celular , Células Cultivadas , Saco Dentário/citologia , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Organoides/citologia , Organoides/patologia , Fenótipo , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo
5.
Front Cell Dev Biol ; 9: 758203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778267

RESUMO

Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...